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Abstract

Autism is a cluster of behavioural abnormalities that manifest as impaired social behaviour, perse-
verance behaviours and altered memory processes. The study of memory processes in mice is used as
a model for normal and pathological cognitive functioning. The euchromatic methyltransferase 1 het-
erozygous knockout (ehmt1+/−) mouse is a model for Kleefstra syndrome, a condition characterized
by autism and intellectual disability. Studies on memory processes in ehmt1+/− have mainly focused
on episodic memory, with mixed results on whether this is improved or equal to healthy subjects. In
this study, ehmt1+/− mice were subjected to the Object-Space task, a novel paradigm to distinguish
episodic from semantic-like memory. In this task mice are exposed to multiple trials involving objects
placed dynamically but with overlapping regularity (overlapping condition), objects placed all in the
same location over trials (stable), or objects randomly placed each trial. Over trials, mice may acquire
the spatial patterns in the first two conditions but not last. However, one major challenge is extracting
comprehensive behavioural information from video data of mice performing such a task. This thesis
describes a computerized method to categorize various behaviours (i.e. Object Exploration, Wall Ex-
ploration, and Corner Sitting) from video data of mice performing the Object-Space task. The method
involves a model that uses techniques such as kinetic action recognition, transfer learning, and pose
estimation to categorize behaviours in both a supervised and an unsupervised manner. The former im-
plements optic flow over multiple frames in order to learn what constitutes a behavioural module of
Object Exploration. The latter implements recent developments in deep learning for pose estimation
to define both Wall Exploration and Corner Sitting behaviours as a geometrical configuration of limbs.
Visual inspection of these models combined show it to be highly accurate in time in terms of sensitiv-
ity and specificity of action classification. Moreover, this behavioural categorization model was used
to describe an array of behaviours (e.g. object exploration time, object discrimination index) of mice
performing trials in all conditions of the Object-Space task. This array of behaviours could be used to
predict genotype (i.e. ehmt1+/− or ehmt1+/+) of a mice based on a single video of a trial in both the
overlapping and stable condition, but not in the control condition. One especially interesting finding is
that the models to predict genotype used more memory related behaviours (e.g. discrimination index)
to predict genotype in the overlapping condition, whereas the models to predict genotype in the sta-
ble condition mainly used general behaviours (e.g. total exploration time). Further inspection of these
behaviours between genotypes show that ehmt1+/− mice may display increased memory expression
behaviours over healthy controls. This indicates that memory processes in this Kleefstra mice model
might be improved, and not characterized by intellectual disability as previously thought.
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1

Introduction

Innate behaviours allow animals to attain goals such as obtaining food or defending from a preda-
tor. The study of ethology proposes that simple action sequences form modules of coherent behaviour,
which is all embedded into neural circuits (Tinbergen, 1951). This idea has led translational neuroscience
researchers to use animal behaviour as a proxy of what they’re really interested in, i.e. neurological
mechanisms that underlie these behaviours (Baker, 2011). For example, Yizhar et al. (2011) showed that
optogenetically causing an excitation/inhibition balance in the rodent medial prefrontal cortex concomi-
tantly causes rodents to reduce social behaviour in a social exploration task. As neurological manipu-
lation becomes increasingly available and research accumulates, there is need for behavioural methods
that surrogates neurological processes. Moreover, behavioural analysis of such a method needs to be
reliable, invariant of the assessor. Current standards of categorizing rodent behaviour are based on test
batteries that require human visual inspection of the video data (Blanchard, Griebel, and Blanchard,
2003; Pandey et al., 2008). Assessing behaviour by means of visual inspection may introduce complica-
tions due to a possible large amount of behavioural categories to assess, sequential complex actions that
could arise from simpler actions, and ambiguous situations. All of these factors reduce inter/intra-rater
reliability. Prior work has addressed these issues by using automated techniques that are able to track
and categorize rodent behaviour based on video data (De Chaumont et al., 2012; Wiltschko et al., 2015).
These models could, for example, take into account specific body parts (e.g. tail, body, head) of the ro-
dent in order to track its position, orientation and speed. These parameters could then be used to define
relative position to other objects or rodents to assess if the tracked rodent is interacting with it. Dere,
Huston, and Silva (2005), for example, used geometrical primitives (e.g. circles) to model mice and track
mice. They then used this model to describe a repertoire of behaviours. Their method used constraints
and physics engines to solve for adaptive body parts movement, which sometimes produces errors of
body parts switching in assigned location. In another study by Wiltschko et al. (2015), behavioural reper-
toires of mice were extracted as stereotypies by using an autoregressive hidden markov model. Their
method was able to find previously unexplored latent behaviours of mice, although may not always be
useful when classifying a priori defined behaviours. Together, these studies show that automatically
categorizing behaviours of mice is plausible by applying machine learning techniques. Notwithstand-
ing the current state of the art, there is no model that is reliably able to track multiple body parts (e.g.
ears, nose, tail) of a rodent and extracts behavioural information.

This thesis describes a novel method based on a multitude of advances in machine learning that
extracts behavioural states in mice using temporal and pose information. The developed method in-
cludes tracking multiple limbs, inferring head direction, and uses the temporal evolution of the mouse’s
movement to derive three main behavioural categories: object exploration, wall exploration and corner
sitting. Furthermore, this method has a frame-wise resolution which allows it to describe these be-
haviours and its relations, such as transition probabilities, as an unfolding evolution over time. To
validate the usability of the developed method, it was used to predict whether a mouse was exploring
an object over the course of time. This information was then used to describe multiple behavioural
features (e.g.transition probabilities) of mice with either an autism-related gene dysfunction or healthy
mice performing a memory task to be described. These behavioural features were then successfully
used to predict the genotype of mice, showing memory related behaviours to be of importance for its
feasibility.
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1.1 Background

1.1.1 Automatic Behavioural Scoring

This study aims to develop an automated rodent behavioural classifier. The proposed approach will
combine techniques of kinetic action recognition, transfer learning, and pose estimation. Combining
these concepts provides a novel approach to potentially supersede previous attempts at computerized
video analysis.

To the end of finding a function that complies with the mapping of video information to the be-
havioural dimension, one may be looking to existing classification approaches. Artificial neural net-
works (ANNs) have been shown to be useful as a method for classification problems in various fields
(Bala and Kumar, 2017; Schmidhuber, 2015). This computational model is inspired by the biological
neural networks that comprise the human brain in that a multitude of interconnected neurons are mod-
ifying their connections in response to some input that is experienced (van Gerven, 2017). The basic unit
of an ANN is the neuron, which receives the input and transmits output as a mathematical function of
the input:

y = f (
N

∑
i=1

wixi)

Where xi is the input neuron, w are the synaptic weights, y is the output and N the number of neurons.
This model is often extended to contain multiple hidden layers of neurons aj, before generating a final
output y. In the classification problem, the output y will ideally be equal to target value t that is the label
of the class to which x belongs. In reality, the true function that transforms the input to a target output
is unknown. By updating the synaptic weights between neurons, the ANN multi-layer perceptron pro-
cedure can approximate any continuous function (Hornik, 1991; Scarselli and Tsoi, 1998). The main
approach to find the optimal synaptic weights to estimate an unknown function is to minimize some
cost function (Nielsen, 2015). One example cost function is the binary Cross-Entropy loss function:

Lt(y) = −(t · log(y) + (1− t) · log(1− y))

Where the cost Lt is zero if the predicted label y matches the target label t and the cost increases
logarithmically by any increase in predictive deviation. With an unknown true transformation function
and increasing number of synaptic connections, the minima of this cost function cannot be found ana-
lytically. For this, techniques such as gradient descent are often used. Altogether, the network will learn
to use underlying features belonging to classes in order to predict the correct class y based on input x.

Kinetic Action Recognition With the vast amount of very deep ANNs (LeCun, Bengio, and Hinton,
2015) trained on big image classification data, one benefit is the use of existing architectures for other
domains, such as action recognition in video data (Carreira and Zisserman, 2017). Carreira and Zisser-
man (2017) used the realization that deep networks can be trivially inflated to become spatio-temporal
feature extractors with initialized weights of the former deep network. Here, inflating a network means
modifying the architecture such that the input allows for a sequence of images (i.e. video) as opposed
to a single image. The authors showed that inflating an Inception network (Szegedy et al., 2015) and
subsequently training it on the Kinetics Human Action Video Dataset (Kay et al., 2017) achieves top
performance in both action recognition and image classification. Inception networks include so called
Inception modules, where each module consists of parallelized different sized convolutional filters fol-
lowed by batch normalization and some activation function (e.g. ReLu or softmax) stacked and concate-
nated as one high-dimensional output for the next layer. Figure 1.1 depicts how this was implemented
by Carreira and Zisserman (2017). An Inception network architecture will then be composed by varying
convolutional layers, max pooling layers, Inception modules and activation functions.
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FIGURE 1.1: Inception module (Inc.) of an inflated network suited for videodata. The
module includes parallel stacked different sized convolutional (conv) filters, ending with

an activation layer (e.g. ReLU, softmax)

Transfer Learning One phenomenon in deep ANNs trained on images is that lower layers show gen-
eral features (e.g. color blobs and Gabor filters) across all kind of datasets, and higher layers show
task-specific features (e.g. mouse). This fact is widely used in the field to apply a technique called trans-
fer learning, which is the idea that one trained ANN can be used as a starting point to train another
(Yosinski et al., 2014). Specifically this means that the first n layers and their weights of some trained
network are copied as initializers for another target network, where this target network is subsequently
trained on the desired classification task. Transfer learning has been shown to speed up training and
improve performance of the deep ANN for the desired target task in many domains (Mittal, Vatsa, and
Singh, 2015; You et al., 2015; Long et al., 2015).

Pose Estimation Quantifying behaviour may be achieved by extracting the geometrical configuration
of multiple body parts (i.e. pose), and its relation to specified actions. Mathis et al. (2018) applied
the concept of transfer learning on deep ANNs to extract the pose of many types of animals in single
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images (Nath* et al., 2018). Specifically, Mathis et al. (2018) made an ANN that has feature layers from
the DeeperCut (Insafutdinov et al., 2016) and outer layers trained to estimate the pose of animals. The
authors’ have shown that their method produces state-of-the-art computerized pose estimation without
the need to physically mark the animals.

1.1.2 Mouse Autism Model

This study will aim to apply the developed automated behavioural classifier method to investigate
memory processes in mice. It will specifically investigate episodic and semantic processes in a mouse
model of autism.

Memory Mechanisms The ability to acquire knowledge about the world is of essence for survival in
the animal kingdom. For example, during a period of drought an elephant may recall the location of a
water source in a similar context when it was young. Armed with the power of this memory, it could
lead its herd to successful hydration, and effectively increasing their likelihood of survival. But what if
this time the previous abundant source is now devoid of water? Shall the elephant survive and live to
find itself in a similar situation once more, should it recall that the source had water for many years or
should it recall that the source if now empty? This question marks an important distinction of aspects
in the mechanism of memory storage. In semantic memory, general statistical attributes are extracted
cumulatively across a multitude of events (Squire, 2004). Conversely, in episodic memory features of
specific events are retained. As memory consolidates, one stored event may transition between these
two types of memory mechanisms (Frankland and Bontempi, 2005; Moscovitch et al., 2016). Differen-
tiation between these two mechanisms of memory has especially proven to be challenging in rodent
studies, disproportionately focusing more on episodic rather than semantic memories (Dere, Huston,
and Silva, 2005; Roberts, 2016).

Kleefstra Model Autism spectrum disorder is a cluster of behavioural syndromes characterized by
early childhood onset of neurodevelopmental abnormalities including impairments in social interac-
tions and communication, and a restricted range of interests, often associated with repetitive and stereo-
typed behaviors (Klinger et al., 2019). Notably, memory processes are often affected in individuals with
autism spectrum disorder. Specifically, individuals with autism spectrum disorder may have an im-
paired episodic memory, yet an unaltered or enhanced semantic memory (Goddard et al., 2014; Gaigg,
Bowler, and Gardiner, 2014). Studying autism independently is hard as individuals with this disorder
tend to have a conglomeration of disorders and symptoms. Kleefstra syndrome is a genetic disorder
characterized by features of autism, and other abnormalities (Kleefstra et al., 2006). This syndrome is
mainly caused by haploinsufficiency of euchromatic histone methyltransferase 1 (ehmt1), a regulator of
synaptic scaling that is critical for neurodevelopmental aspects such as neural network activity (Ben-
evento et al., 2016; Balemans et al., 2012). Studies using mice with a heterozygous ehmt1 (ehmt1+/−)
gene have shown them to have reduced exploration and increased anxiety in novel environments, and
increased pattern separation in other contexts (Balemans et al., 2010; Benevento et al., 2017). With the
scarce amount of studies on semantic memory abilities in rodents (with and without autism), varying
memory mechanisms may need refined characterization.
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Methods

2.1 Dataset

The dataset used throughout this thesis consists of videos of mice performing the Object-Space task as
described below. Most of these videos are scored by humans on mice either exploring an object or not.

2.1.1 Subjects

Male wildtypes ehmt1+/− and ehmt1+/+ and mice (bred in-house), 12-16 weeks of age at the start of be-
havioural training were group housed with ad libitum access to food and water. Mice were maintained
on a 12 hour dark-light cycle and tested during the light period. In compliance with Dutch law and
Institutional regulations, all animal procedures were approved by the Central Commissie Dierproeven
(CCD) and conducted in accordance with the Experiments on Animal Act.

2.1.2 Object-Space Task

The Object-Space task, developed by Genzel et al. (2018), aims to distinct between episodic and semantic
memory using behaviour as a proxy. For the full habituation and training procedure, please refer to
Genzel et al. (2018).

In the Object-Space task, mice are allowed to explore two objects in a 75cm×75m box with either a
white or a green background (see Figure 2.1a. Objects could either be in the upper right, lower right,
lower left, or upper left. The general reasoning is that mice tend to prefer exploring objects at novel
locations. For a total of 21 trials, objects are placed with different patterns that could be either stable,
overlapping, or randomly configured. For all conditions mice are trained for 5 trials, each 5 minutes, per
day for 4 days with object types always being identical within a trial but varying between trials. Subse-
quently, 24 hours after the last training trial (trial 20), a test trial with a condition-specific configuration
is done for 10 minutes. In the stable condition (see Figure 2.1b), objects are always at the same location
for the first 20 trials. Then, at the test trial one object is moved to a novel location. With one object moved
at the test trial, it is expected that mice explore the object at the novel location more than the static one.
Moreover, "knowing" which location is the novel could either be solved by remembering the last train-
ing trial, or forming some cumulative memory of all training trials. In the overlapping condition (see
Figure 2.1c), one object is always presented at the same location across the first 20 trials whereas the
other varies at the other three potential locations. Then, the configuration of objects is the same in the
test trial as in trial 20. This is paramount for distinguishing between memory processes. To elucidate, if
only the last training trial is remembered then there is no novel object location and no object preference
is expected in exploration. In contrast, if the mouse has acquired the cumulative statistical knowledge
from the training trials that one location always has an object placed on it then the other object in will be
relatively novel in trial 21. Thus, with some semantic process the mouse may explore the object at the
varied location more than the object at the stable location. In the random condition (see Figure 2.1d),
object placement is psuedorandomly configured across training and test trials such that there ought to
be no perceived pattern. With no pattern, no object location discrimination in exploratory behaviour is
expected.
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(A) An example box layout with objects in the upper right
and lower left.
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(B) Schematic example of a stable trial sequence. Here, for
the first twenty trials all objects are in the same location. One

object is moved in the last trial.
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Overlapping

(C) Schematic example of an overlapping trial sequence.
Here, for all trials one object remains at the same location.
The other object varies in location for the first 19 trials, but is

stable in the last two trials.

Random
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Trial ... Trial ... Trial ... Trial ... Trial ..

Trial 20Trial 19Trial 18Trial 17Trial 16

Trial 21
D

ay
 1

D
ay

 ..
.

D
ay

 4

D
ay

 5

(D) Schematic example of a random trial sequence. Here,
for all trials, all objects are pseudorandomly placed such that

there is no spatial pattern.

FIGURE 2.1: Object-Space task for mice. One full sequence of 21 trials is a week’s session that consists of 5 training
trials per day for 4 days, and a probe trial 24 hours after the last trial on day 4.

2.2 Automatic Behavioural Scoring

The methods used to arrive at a fully automated behavioural scoring of video data with mice in the
Object-Space task will be described in this section.

The data extracted from the Object-Space task consists of varying length videos V filmed from above
a white or green square box that contains two static objects and one moving black mouse. The goal is to
find some mapping per V such that the output is a time-series vector x =

(
x1 . . . xt

)
of length t that

per frame i outputs what action the mouse is doing xi, with action set:

χ = {exploring object, exploring wall, sitting in corner}

This is a function f ::
{
V 7→ x =

(
x1 . . . xt

)
.

The implementation

To predict the actions of Objection Exploration, Wall Exploration, and Corner Sitting, two models will
be presented. The first model will use Kinetic Action Recognition to extrapolate the Object Exploration
behaviour of the mice. The second model will use pose estimation to extract the actions Wall Explo-
ration and Corner Sitting. The reason for this split is due to in-lab availability of action labeled Object
Exploration video data, whereas the other actions have no such dataset. In the end, the predicted actions
of both models can be frame-wise concatenated for each video trial.
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2.2.1 Object Exploration

The goal is to find some mapping per V such that the output is a time-series vector x =
(
x1 . . . xt

)
of

length t that per frame i outputs whether the mouse was exploring an object or not xi, that is a function
fE ::

{
V 7→ x =

(
x1 . . . xt

)
.

Dataset A dataset was created that consists of 100 stacked videos (width: 384, height: 512) of mice
performing the Object-Space task in a white background box that is frame-wise manually labeled by
humans for object exploration. In total this dataset consists of 910237 pairs of frames and target labels.
Next, the dataset was pseudo-randomly split into a training (90%) and validation (10%) set. That is,
batches of 27 frames were put into either the training or validation set.

The model A deep inflated inception ANN was made to classify videodata of mice performing the
Object-Space task by applying transfer learning to the human action recognition model by Carreira and
Zisserman (2017). The original model (see Figure 2.2a) was designed and trained to classify 400 human
actions. Applying the ideas of transfer learning, the higher layers of this model were removed and re-
placed by several convolutional layers and a final activation layer to output 2 classes: exploring object
and ¬exploring object (see Figure 2.2b). This means that the orange part in Figure 2.2b has initialized
weights from the model trained by Carreira and Zisserman (2017) and the green part of randomly ini-
tialized weights yet to be trained on the mice videodata. The final model takes 9 stacked frames that
form one video as input and predict an action for the middle frame.

Pre-processing The original dataset was not pre-processed, albeit every input to the model was pre-
processed individually for every prediction. For each input video, 27 frames were uniformly subsam-
pled by steps of 3 to form 9 consecutive frames that would be the small video as input to the model. To
better generalize to different camera angles and types, and video distortions, the input was subjected to
random small affine transformations (rotation, shearing and translation) with probability 0.8 and ran-
dom uniform noise with probability 0.5 for each batch during training. This noise was always pixel-wise
applied in the uniform range is -1.5 to 1.5 times the standard deviation per pixel over the batch. Finally,
for validation there was no batch-wise distortion to stay true to the original data.

Metrics To quantify success of the network in predicting object exploration several metrics were cal-
culated per epoch for testing performance on the training and validation set. The first metric, which
was also the loss function, is the binary cross-entropy loss, calculated as described in section 1.1.1. The
second metric is the area under the receiver operating characteristics curve (AUROC), calculated as:

AUROC =
1

mn

m

∑
i=1

n

∑
j=1

1pi>pj

This runs over all m datapoints with label 1, and all n datapoints with label 0. Here, pi and pj are
the probabilities of datapoints i and j assigned by the network. The indicator function 1 outputs 1 iff the
condition pi > pj is satisfied.

Training The network was trained for 139 epochs and 1000 iterations per epoch on the training data
set. Each iterations had a batch size of 7 videos, such that the size of the input was 7× 9× 384× 512× 3
with the last dimension being colour. The loss per batch was calculated as the binary Cross-Entropy loss
function and weights were optimized using stochastic gradient descent.
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2.2.2 Wall Exploration and Corner Sitting

The goal is to find some mapping per V such that the output is a time-series vector x =
(
x1 . . . xt

)
of

length t that per frame i outputs what action the mouse is doing xi, with action set:

χ = {exploring wall, sitting in corner}

This is a function fWC ::
{
V 7→ x =

(
x1 . . . xt

)
.

Dataset A dataset was created of 8000 images (width: 384, height: 512) of mice in either the the green
or white background Object-Space task box. These images were manually labeled, using DeepLabCut
(Nath* et al., 2018), for four body parts: 1. Nose, 2. Right ear, 3. Left ear, 4. Back, and 5. Tail base.

Pose Estimation An ANN was trained on 90% of the dataset and validated on 10% of the dataset, using
DeepLabCut (Nath* et al., 2018). This model extracted four bod parts of a mouse in a single image: 1.
Nose, 2. Right ear, 3. Left ear, 4. Back, and 5. Tail base. Using the pose, the head direction (HD) of the
mice can be calculated as the angle between the mean vector of the body parts λ = {Right ear, Left ear,
Back} pointing to the Nose; more formally HD = arctan2(y, x), with (x, y) being coordinates calculated
in its own plane calculated as (x, y) = 1

3 ∑bp∈λ(x, y)bp− (x, y)nose. The result is a model that can estimate
both the pose and head direction of a mouse in a single image of the Object-Space task.

Box Template To relate mouse pose to any area-related behaviour, box templates were made where
the wall and corner areas are represented as rectangles and circles respectively. For walls this means
that each cardinal direction wall is represented by a rectangle spanning the wall, including a bit of space
next to it. For corners this means that each corner is represented by a circle, with its origin in the most
outer part. One example template can be found in Figure 2.3.

The Model A rule-based model was made that takes mouse pose and box template as input and
outputs the set of actions that is applicable to that frame. The mouse’s location is represented as the
mean xy-coordinate of the Nose, Left ear, and Right Ear: (x, y) = 1

3 ∑bp∈λ(x, y)bp. To evaluate whether
the mouse is in the corner, the mouse’s location can be checked to be in one of the circles that represent
this area. To evaluate whether the mouse is exploring the wall, the mouse’s location and head direction
can be checked per wall. For example, if the mouse is in the north wall’s area then the head direction
must be HD ∈ [0.1 ·π, 0.9 ·π]. Here the constants 0.1 and 0.9 represent a 90% field of view for the mouse
in π distance.

The final function that maps some video to the set of actions per frame f ::
{
V 7→ x =

(
x1 . . . xt

)
can be constructed by concatenating the outputs of both fE and fWC (see Figure 2.4).
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(A) The original inflated-inception-V1 network structure for human action recognition by Carreira and Zisserman
(2017).
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(B) Modified network structure of subfigure (A). Here, part of the network in the orange box is copied from the
original network (including weights). The top part (following the last Inc. layer) of the old network is cut off and

replaced by a the new structure in the green box (random initial weights).

FIGURE 2.2: The ANN structure used for kinetic action recognition, where subfigure (A)
is the original network used for human action recognition and subfigure (B) is the re-
structured network for mice action recognition. Inc. is an inception module as described
in Figure 1.1. The first input is always n stacked frames that form a small video, and the
output is predicted probability of all actions. Instead of probability for 400 human action

classes, the predictions are now two-class: exploring object and ¬exploring object.
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FIGURE 2.3: Example template of a box as seen by the rule-based model. Rectangles repre-
sent wall areas and circles represent corner areas.

Video
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 1 0 0 0
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... ... ... ...
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{Object Exploration}
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Concatenate

.
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FIGURE 2.4: The full model for the automatic behavioural scoring f (V). First, the video
is passed along both the Kinetic Action Recognition ANN fE and the rule-based model
fWC separately. These models output {Object Exploration} and {Wall Exploration, Corner
Sitting} respectively per frame. These actions are then concatenated into a final judgement

of all actions per frame of the video.
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2.3 Genotyping

The methods used to predict the genotype of each mouse subject per trial in a certain condition (i.e.
video) will be described in this section.

The data after scoring videos V in the Object-Space task consists of approximately |Subjects| ×
|Trials| × |Condition| = |Subjects| × 21× 3 sequences x =

(
x1 . . . xt

)
, where xi is either exploring

object 1, exploring object 2 or not exploring at time i. The sequences x were extracted using the auto-
matic behavioural scoring model described in Section 2.2. The goal here is to find some mapping per x
such that the output is a boolean B describing the subject to be either an ehmt1+/+ (0) or ehmt1+/1− (1)
genotype, that is a function g ::

{
x 7→ B .

2.3.1 Features

To predict predict genotype for each sequence x, features that potentially explain behavioural variance
as a result of genotype were extracted. An overview of all features can be found in Table 2.1.

The first feature is First object, which is set to 1 if object 1 was first explored and set to 2 if object
2 was first explored in the trial. Secondly, First object latency was calculated was the total time (i.e.
in frames or time) that has passed until the mouse first explored any object. The next two features,
Stay1 and Stay2, describe the likelihood over the whole trial of transitioning to exploring object i after
object i was just explored. This likelihood satisfies the Markov property, which refers to that the next
state (i.e. exploring object 1 or 2) depends only on the current state. Specifically, the feature Stayi was

calculated as follows: p(Ek = i|Ek−1 = i) = ∑E
k=2 δk

ii ·δ
k−1
ii

∑E
k=2 δk−1

ii
, which iterates over all object explorations E to

evaluate the proportion of specific object i explorations k that followed from an exploration of object i
for k− 1. Here, δ is the dirac function which is set to 0 if its subindices are identical, and 0 otherwise.
The next feature SS1 (steady state probability for object 1) is calculated based on the transition matrix

P =

(
Stay1 1− Stay1

1− Stay2 Stay2

)
. It is calculated as the first element of µ in µP = µ, meaning that the

probability of exploring object 1 next does no longer change after exploring any next object.
Next, the Perseverance Index is an index ranging from −1 to 1, where −1 represents a tendency

to switch objects between explorations, 1 represents a tendency to re-explore the same object after it
was just explored, and 0 represents no tendency. Specifically, the feature was calculated was follows:
PI = ∑i stayi−(∑i 1−stayi)

∑i stayi+(∑i 1−stayi)
, where stayi is the feature stay for object i. The next feature, n_transitions is the

total number of transitions made between any objects during the whole trial and is in essence the total
number of object explorations minus one. The next five features are mini_n_explore, where i is in the
range from 1 to 5. This describes the cumulative number of object explorations per minute for the first
five minutes. In line with the previous feature, the next ten features are mini_n_explore_objectj, which for
each object describes the cumulative number of explorations up until that minute.

The next five features are mini_time. where i is is in the range from 1 to 5. This describes the total
cumulative time of exploring any object up until minute i. The next ten features are mini_objectj_time,
where j is either object 1 or 2. This describes the total time a specific object was explored up until that
minute minute.

The next feature is bout_time. This feature describes the mean specific object exploration (bout)
time over the whole trial. Thus, how long a mouse keeps exploring a single object. It is calculated
as min5_time

min5_n_explore . The next two features bout_time_objj are in line with the previous one. It describes the

bout time for each specific object over the whole trial. It is calculated as min5_objectj_time
min5_n_explore_objectj

.
Lastly, the five features mini_DI represent the Discrimination Index (DI) for each minute up until

that minute. The DI is an index ranging from −1 to 1, where −1 represents a preference for exploring
object 2, 1 represents a preference for object 1, and 0 represents no preference. Specifically, the feature
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was calculates a follows: (∑E
k δk

1i ·timek)−((∑E
k δk

2i ·timek)

∑E
k timek

, were timek is duration of a specific exploration k, and
E is all explorations up until that minute.

Feature Description Calculation

First object Whether the first object explored was
either object 1 or object 2

First object latency Latency to first exploration of any ob-
ject

Stayi Likelihood of exploring object i next,
after having last explored object i.
Where i is either 1 or 2.

∑E
k=2 δk

ii ·δ
k−1
ii

∑E
k=2 δk−1

ii
, where k is a specific explo-

ration any of object and δ is the dirac
function

SteadyState1(SS1) The probability of exploring object 1
after many explorations

First element of µ, in µP = µ. With
transition matrix P

Perseverance Index Index ranging from −1 to 1 represent
the tendency of switching between ob-
jects during exploration as −1, the ten-
dency to re-explore the same object
during exploration as 1, and no ten-
dency as 0

∑i stayi−(∑i 1−stayi)
∑i stayi+(∑i 1−stayi)

, where stayi is the
previous feature for object i

n_transitions Total number of transitions made be-
tween objects during the whole trial.

mini_n_explore Per minute i, the total number of ex-
plorations of any object up until that
minute

mini_n_explore_objectj Per minute i, the total number of explo-
rations of object j up until that minute

mini_time Per minute i, the total time any object
was explored up until that minute

mini_objectj_time Per minute i and object j, the total time
that object was explored up until that
minute

bout_time Mean time of explorations of any ob-
ject

min5_time
min5_n_explore

bout_time_objj Mean time of explorations of object j min5_objectj_time
min5_n_explore_objectj

mini_DI Per minute i, the the discrimination in-
dex (DI) up until that time represent-
ing a preference for exploring object 2
as−1, a preference for exploring object
1 as 1, and no preference as 0

(∑E
k δk

1i ·timek)−((∑E
k δk

2i ·timek)

∑E
k timek

, were timek is
duration of a specific exploration k,
and E is all explorations up until that
minute

TABLE 2.1: Features extracted from the sequence data per trial. Each feature is described,
and, where applicable, the calculation is shown. In total 45 features were calculated. All

features were calculated only for the first five minutes of a trial.
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2.3.2 Implementation

Dataset After feature engineering, the dataset consisted of 1738 datapoints (i.e. rows). Each datapoint
entails information about the trial such as condition, trial number, subject number, and subject genotype.
Next to this, each datapoint include all the features corresponding to its trial (i.e. video). In this dataset,
only features are considered predictors and the genotype is the target variable. All analyses in this
section will be done on the dataset split by the three conditions (stable, overlapping, random) and all
conditions pooled, such that results may be compared between conditions. This resulted in a total
of 1738 (ehmt1+/+ : 1213, ehmt1+/− : 525) datapoints for the pooled trials, 590 (ehmt1+/+ : 416,
ehmt1+/− : 174) datapoints for the overlapping trials, 585 (ehmt1+/+ : 409, ehmt1+/− : 176) datapoints
for the stable trials, and 563 (ehmt1+/+ : 388, ehmt1+/− : 175) datapoints for the random (control) trials.

Pipeline A diagram of the logic to classify genotype based on the features in the dataset can be found
in Figure 2.5. The figure depicts that first the dataset is randomly split into a training (90%) and val-
idation (10%) set. Then, the features are selected as predictors which are used as input for multiple
independent classifiers (see next paragraph). . The parameters for each classifier are then optimized us-
ing 10-fold cross-validation grid search with AUROC as the performance metric (Kohavi, 1995; Bergstra
and Bengio, 2012). After optimal parameters for each classifier is set, this results in models that can now
predict genotype for each trial using the given features. The models are then tested against the final
validation set with AUROC as a metric.

Model...

Classifiern

Classifier...

10% ⊂

90% ⊂

Feature Selection Classifier1

Grid Search

Cross
Validation

(k=10)

Pa
ra

m
et

er
 

O
pt
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io

n

Model1

Modeln

Predictions

AU
R

O
C

Validation

AU
R

O
C

Train

Test

Subject Trial Featurei Genotype 

 1 1 Value 0

1 2 Value 0

... ... ... ...

213 21 Value 1

FIGURE 2.5: This figure depicts that first the dataset (upper left)
were split into a training (⊂ 90%) and validation (⊂ 10%) set. Us-
ing the training set, all classifiers are trained and optimized for its
respective parameters using grid search with 10-fold cross vali-
dation. A classifier with its parameters optimized for the dataset
is called a model (for specific models, see next section). Each
model then predicts genotype on the validation set and is tested

on its AUROC score.

Models

Random Forest The Random For-
est classifier is a bootstrapping algo-
rithm that parallelly constructs multi-
ple decision trees that are subsequently
merged together to make a final predic-
tion (Breiman, 2001). To clarify, the de-
cision trees learn how to split the dataset
into smaller subsets in order to predict the
outcome. Such a decision tree consists
of nodes (i.e. condition) and edges (i.e.
decisions), which are build in layers un-
til the decision tree is optimized by mea-
sure of some impurity criterion. The ran-
domness in the algorithm is that, while
splitting nodes, the best feature is chosen
among a random subset of features. This
randomness creates a variable forest of de-
cision trees, consequently reducing over-
fitting. The following parameters were
optimized: maximum number of features
used for each node split, minimum num-
ber of leafs to split an internal node, and
criterion measure (gini impurity, entropy).

XGBoost The XGBoost classifier is a
gradient boosting algorithm that sequentially constructs many weak learners (i.e. shallow decision
trees) that are subsequently aggregated to make a final decision (Chen and Guestrin, 2016). Whereas
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the Random Forest model merges the outcome of many (deep) decision trees in order to reduce model
variance, XGBoost recursively builds many shallow decision trees that uses the residuals of its prede-
cessor, which ultimately reduces bias. To clarify, first a base-model F1(x) = y is fit to the data upon
which a residual-model is fit to its residuals such that h1 = y− F1(x), then Fi(x) = Fi−1(x) + hi−1(x),
where y is the target value, Fi is the current model, and hi is the model on the residuals of Fi. This
procedure can go on until either the model has no error or a maximum number of M models has been
reached. The following parameters were optimized: learning rate, maximum tree depth, gamma (node
split regularization), and minimum sum of instance weight (hessian) needed in a node child.

Feature Importance For all models, feature importance’s were calculated as relative drop-column
importance. That is, for each feature f ∈ F in base-model MF (x), the model is re-trained on the
training data without that feature such that features F ′ = F \ { f } and the model without that fea-
ture is MF ′(x). Then the absolute feature importance is calculated as contribution to accuracy: I f =
AUROC(MF (x))− AUROC(MF ′(x)). This is then normalized to be between 0 and 1 and summing

to 1 by: I f =
I f−argmin

IF
∑ f (I f−argmin

IF
)
. Thus, the feature importances represent an importance ranking for each

feature within a model. Furthermore, feature importances do represent the importance of that feature
plus all possible interactions with all other features.

Data Analysis To test whether the AUROC of each model was above the expected value of chance,
they were tested under the permutation distribution (Welch, 1990; Ernst, 2004). That is, the classification
of genotype procedure was repeated (simulated) 1000 times with the same model and the same features
with its labels randomly permuted. The probability of getting the original model’s AUROC is then
given by the percentage of simulations that had an equal or higher AUROC than the original model.

To gain further insight in genetic differences within feature scores, the top 5 features per model were
tested under the permutation distribution. That is, genotype (0, 1) was treated as a between subject-
factor for each feature for a two-sided test. Specifically, for each feature the group mean differences
were calculated 10000 with the genotype labels permuted. Then, the probability of either genotype
being high than the other is given by the percentage of simulation where the mean difference is equal to
or higher/lower than the original group mean difference.
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Results

3.1 Automatic Behavioural Scoring

Object Exploration Model The binary Cross-Entropy loss and AUROC over epochs of the deep in-
flated inception kinetic action recognition ANN are depicted in Figure 3.2a. Both the training and vali-
dation sets’ loss decrease over-time, with the training set (loss: 0.136) having a slightly lower loss than
the validation set (loss: 0.152). Furthermore, the AUROCs of both the validation and training increase
over epochs, with the training set (AUROC: 0.9914) having a slightly higher AUROC than the validation
set (AUROC: 0.9852). Next, the ROC-curve of the last epoch is shown in Figure 3.2b. The network has
both high sensitivity and specificity for both the training and validation set.

Finally, since this model works with video data, its performance is perhaps best illustrated by show-
ing predictions on actual footage. The video is shown in Figure 3.1a. These predictions are made on
a video that the network is neither trained on nor validated with. The changing length and color line
at the bottom of the video depicts the probability of the mouse exploring an object that the network
ascribes to the frame. This bar is red when p < 0.5 and green otherwise. Recall that for the final model
that includes all actions, this probability is binary at a threshold of 0.5.

Final Model The final model predicts all actions χ = {exploring object, exploring wall, sitting in corner}
per frame of a video V . The final model is a concatenation of the exploration model and the rule-based
model, to respectively predict {Object Exploration} the remaining actions {Wall Exploration, Corner Sitting}.
Since the latter part of the model has no ground truth labeled data, it is best validated by qualitatively
inspecting its results. A video with predictions is shown in Figure 3.1b. These predictions are made on
video data that has not been used in any training in any part of either model.

(A) A video of predictions made on mouse Object Ex-
ploration by the model in Figure 2.2b. The bar on the
bottom represents the probability p that the model as-
cribes to the mouse exploring the object. This bar is

red when p < 0.5 and green otherwise.

(B) A video of predictions made on mouse Object Ex-
ploration, Wall Exploration, and Corner Sitting by the
model in Figure 2.4. Here, the icons in the upper left
corner represent the actions and are black when no
action is predicted. Object Exploration is indicated
by the magnifying glass turning blue, Corner Sitting
is indicated by the flagged corner turning green, and
Wall Exploration is indicated by the Donald Trump
face turning orange. Furthermore, coloured dots are
projected onto the mouse’s limbs and an arrow is pro-

jected to indicate the mouse’s head direction.

FIGURE 3.1: Videos of predictions by both Automatic Behavioural Scoring models. Please click on the respective
image to play the video.

https://www.youtube.com/watch?v=VnqY_rwVP_I&feature=youtu.be
https://www.youtube.com/watch?v=VnqY_rwVP_I&feature=youtu.be
https://www.youtube.com/watch?v=qbXFZ7e-4TQ&feature=youtu.be
https://www.youtube.com/watch?v=qbXFZ7e-4TQ&feature=youtu.be
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FIGURE 3.2: Statistics for the kinetic action recognition ANN that predicts Object Explo-
ration of mice. To see the model in action, the reader is referred to this video.

3.2 Genotyping

Model Performances Performance of each model for each condition (all pooled, stable, overlapping,
random) are depicted in Figure 3.3a with its accompanying ROC-curves in Figure 3.3b. All models
except the ones in the control condition have an AUROC > 0.61 that is significant (∀i : pi < 0.001) under
the permutation distribution. Furthermore, inspecting each significant model’s ROC-curve shows that
all models have relatively high specificity relative to their sensitivity.

For the models trained on all conditions pooled, both the RF (AUROC ≈ 0.69, p < .001) and XG-
Boost (AUROC ≈ 0.7, p < .001) are predicting genotype of mice based on single trials with a perfor-
mance above chance level. Furthermore, both the RF (sensitivity≈ 0.49, specificity≈ 0.89) and XGBoost
(sensitivity≈ 0.51, specificity≈ 0.89) models have higher specificity than sensitivity. This means that the
model’s are very specific in ascribing the ehmt1+/+ genotype on the potential cost of missing cases that
should have been detected.

For the models trained on trials in the stable condition, both the RF (AUROC ≈ 0.62, p < .001)
and XGBoost (AUROC ≈ 0.61, p < .001) are predicting genotype of mice based on single trials with
a performance above chance level. Furthermore, both the RF (sensitivity≈ 0.35, specificity≈ 0.88) and
XGBoost (sensitivity≈ 0.35, specificity≈ 0.87) models have higher specificity than sensitivity.

For the models trained on trials in the overlapping condition, both the RF (AUROC≈ 0.68, p < .001)
and XGBoost (AUROC ≈ 0.68, p < .001) are predicting genotype of mice based on single trials with a
performance above chance level. Furthermore, both the RF (sensitivity≈ 0.48, specificity≈ 0.87) and
XGBoost (sensitivity≈ 0.48, specificity≈ 0.87) models have higher specificity than sensitivity.

For the models trained on trials in the random condition, both the RF (AUROC ≈ 0.56, 0.05 < p <
0.07) and XGBoost (AUROC ≈ 0.59, 0.05 < p < 0.0) are not significantly predicting genotype of mice
based on single trials with a performance above chance level.

However, the same trend shows as with the aformentioned conditions that both the RF (sensitivity≈
0.26, specificity≈ 0.86) and XGBoost (sensitivity≈ 0.32, specificity≈ 0.85) models have higher specificity
than sensitivity. This The insignificant performance’s seems to be the consequence of a low sensitivity.

https://www.youtube.com/watch?v=VnqY_rwVP_I&feature=youtu.be
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FIGURE 3.3: Statistics for the genotype classifiers based on the features by model labeled data for all conditions
in the Object-Space task.

Feature Importances Top ten features’ relative importances and top five feature mean differences were
tested under the permutation distribution. A high relative feature importance means that a model uses
that specific feature and all its potential interactions with other features. Relating this to the feature
differences between genotype, this implies that a significant difference of a feature between genotype
might be used directly in a model, whereas an insignificant difference might be used in interaction with
other features. This complexity of features in decision trees is illustrated in Figure 3.4 for the overlapping
condition. This particular decision tree uses an interaction between min2_obj1_time and min4_DI to split
the initial major parts of the data for classification.

For the models trained on all conditions pooled, top ten features per model are depicted in Figure
3.5a. The mean differences of a feature between genotype of the top five feature per model are depicted
in Figure 3.6. All features, except bout_obj2_time, min2_n_explore and stay1, differ significantly (p < 0.05)
in their mean.

For the models trained on trials in the stable condition, top ten features per model are depicted in
Figure 3.5b. The mean differences of a feature between genotype of the top five feature per model are de-
picted in Figure 3.6. Six features differ significantly (p < 0.001): min2_n_explore_time, min3_explore_time,
min_obj2_time, min5_explore_time, and min5_obj1_time. With all cases the mean being higher for the
ehmt1+/+ than the ehmt1+/− genotype.

For the models trained on trials in the overlapping condition, top ten features per model are depicted
in Figure 3.5c. The mean differences of a feature between genotype of the top five feature per model
are depicted in Figure 3.6. Almost all features differ significantly (p < 0.05) in their mean, except
bout_time and min2_n_explore. Notably, this is the only model that includes multiple DI features that all
differ significantly in their mean with the ehmt1+/− genotype consistently having a higher DI than the
ehmt1+/+ genotype.

For the models trained on trials in the random condition, top ten features per model are depicted in
Figure 3.5d. The mean differences of a feature between genotype of the top five feature per model are
depicted in Figure 3.6. Only two features differ significantly in their mean: min4_n_explore (p < 0.001)
and min5_explore_time (p < 0.001), where in both cases the ehmt1+/+ genotype has the highest explore
times.
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min2_obj1_time <= 9.07
entropy = 0.834
samples = 292

value = [347, 125]
class = ehmt1+/+

min4_DI <= 0.81
entropy = 0.995
samples = 127

value = [102, 87]
class = ehmt1+/+

True

min4_DI <= 0.289
entropy = 0.569
samples = 165

value = [245, 38]
class = ehmt1+/+

False

bout_obj1_time <= 0.587
entropy = 0.971
samples = 107
value = [96, 64]

class = ehmt1+/+

min4_n_explore_obj1 <= 11.5
entropy = 0.736
samples = 20
value = [6, 23]

class = ehmt1+/-

perseverance <= 0.439
entropy = 0.958
samples = 40

value = [22, 36]
class = ehmt1+/-

bout_obj2_time <= 0.162
entropy = 0.848
samples = 67

value = [74, 28]
class = ehmt1+/+

entropy = 0.0
samples = 3
value = [5, 0]

class = ehmt1+/+

bout_obj2_time <= 0.951
entropy = 0.905
samples = 37

value = [17, 36]
class = ehmt1+/-

min1_explore_time <= 13.96
entropy = 0.984
samples = 28

value = [17, 23]
class = ehmt1+/-

entropy = 0.0
samples = 9

value = [0, 13]
class = ehmt1+/-

min5_obj2_time <= 19.909
entropy = 0.997
samples = 23

value = [17, 15]
class = ehmt1+/+

entropy = 0.0
samples = 5
value = [0, 8]

class = ehmt1+/-

entropy = 0.779
samples = 9

value = [3, 10]
class = ehmt1+/-

min1_obj1_time <= 0.757
entropy = 0.831
samples = 14
value = [14, 5]

class = ehmt1+/+

entropy = 0.994
samples = 8
value = [6, 5]

class = ehmt1+/+

entropy = 0.0
samples = 6
value = [8, 0]

class = ehmt1+/+

entropy = 0.0
samples = 2
value = [0, 3]

class = ehmt1+/-

min5_n_explore <= 33.5
entropy = 0.815
samples = 65

value = [74, 25]
class = ehmt1+/+

min1_explore_time <= 14.76
entropy = 0.902
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FIGURE 3.4: Example decision tree for models based on data from the overlapping condi-
tion trials. This particular decision tree seems to use an interaction between min2_obj1_time
and min4_DI to split the first major part of the data into classes. This shows that classifi-
cation is no simple single variable cut-off decision, but a complex process. Note that one

decision tree is not fully representative for all the trees used in the ensemble.
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(A) Top features for each model using the trials in all condi-
tions.
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(B) Top features for each model using the trials in the stable
condition.
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(C) Top features for each model using the trials in the over-
lapping condition.
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FIGURE 3.5: Top 10 features and their relative feature importance per model for all subsets of data (all conditions,
stable, overlapping, random).
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FIGURE 3.6: (A). Top features and their box plot per genotype for each model using the
trials in all conditions.
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FIGURE 3.6: (B). Top features and their box plot per genotype for each model using the
trials in the stable condition.

Box plots of the top 5 features per model for all subsets of data (all conditions, stable,
overlapping, random). The white square represents the mean. The difference of the mean
between genotype (0,1) was tested for each feature under the permutation distribution.
Asterisks represent the p-value of the respective feature differences: * = (p < .05), ** =

(p < .01), *** = (p < .001), n.s. = (p > 0.05).
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FIGURE 3.6: (C). Top features and their box plot per genotype for each model using the
trials in the overlapping condition.
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FIGURE 3.6: (D). Top features and their box plot per genotype for each model using the
trials in the random condition.
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Discussion

It has been a long standing challenge in translational neuroscience to reliably extract meaningful infor-
mation from rodents performing composed modules of behaviour. One major part of this challenge is
due to the unreliability and laboriousness of human visual inspection of large amounts of video data
(Blanchard, Griebel, and Blanchard, 2003; Pandey et al., 2008). This problem may be tackled by apply-
ing advances machine learning to track rodents and identifying their behaviours. Previous attempts at
categorizing behaviour at the spatiotemporal scale have either focused on latent expressions or fully
predefined models (De Chaumont et al., 2012; Wiltschko et al., 2015). This work presented a method
to score sequences of varying behaviours in mice roaming a square box. By applying pose estimation
and optic flow techniques from the machine learning field, it has been shown that it is possible to per-
form a fully automated behavioural classification with high sensitivity and specificity of its constituents.
Furthermore, this method may be utilized by subsequent analyses such as task-specific genotyping of
mice.

4.1 Action Classification

The developed automatic behavioural scoring model presented is composed of two major parts, that is
one unsupervised sub-model and one supervised sub-model. The former relies on ad hoc definitions
of what constitutes a behavioural model, exploiting existing pose estimation techniques. In contrast,
the latter involves a self-learning decision process that uses optic flow to define what comprises a be-
havioural module.

The unsupervised sub-model that classifies both mouse Wall Exploration and Corner Sitting imple-
ments the recent pose estimation algorithm DeepLabCut to identify actions based on the geometrical
configuration of multiple body parts (Mathis et al., 2018; Nath* et al., 2018; Insafutdinov et al., 2016).
Specifically, the ears, nose, back, and tail were used to infer mouse head direction and body position
allowing to quantify behaviour. This thesis supports the reliability and unexplored use cases (i.e. infer
head direction, action classification) of this specific pose estimation software. To elucidate, it validates
that the feature layers from the DeepLab ANN may be used to train a new model on images of mice
in a box that are relatively low quality. Thus, transfer learning in pose estimation provides an array of
opportunities for researchers to identify their animals without marking and moreover using this infor-
mation to perform behavioural analysis. The behaviours in this model were predefined by both mouse
position and head direction, which is ideal in situations where there is not a lot of labeled video data
available that consists of many action labels. One caveat of this technique might be that it could be
hard to control for all possible cases in complex scenarios, potentially over engineering one model that
doesn’t generalize well.

The supervised sub-model that classifies mouse Object Exploration implements transfer learning on
the labels of an existing human action recognition ANN (Carreira and Zisserman, 2017; Szegedy et al.,
2015; Yosinski et al., 2014). Specifically, the top layers of the original inflated inception network were
cut and replaced by a cascade of new layers to ultimately predict the label Object Exploration. This
network used a sequence of 9 frames, evenly spread over 30 frames, as input to allow optic flow and
colour channels (i.e. inception modules) to carry optimized smooth flow information to final convo-
lutional feature-and decision layers. With an AUROC higher than 98%, this model has shown to be
highly sensitive and specific to the action classification category in mice exploring objects. This sup-
ports the benefit of transfer learning on a kinetics pre-trained ANN across domains, since the type of
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video data of the original network (i.e. humans) and the final network (i.e. mice) in this thesis rather
dissimilar. Using ANNs for automatic behavioural scoring opens up opportunities for the translational
neuroscience field as it allows for identifying behavioural modules without researcher bias to define
them. That is, ANNs may learn to classify a behavioural model by dynamically changing its weights
for relevant spatiotemporal feature layers to emerge without the need of human intervention. Albeit
this method has been shown to be great for behavioural scoring, it might not offer much insight in what
constitutes a behaviour. This is because ANN are sometimes considered black-box methods because it
is hard to find a consistent way of interpreting its logic in decision, albeit methods have been suggested
(Benítez, Castro, and Requena, 1997; Dayhoff and DeLeo, 2001; Tzeng and Ma, 2005). Thus, although
not giving insight in the structure of one behavioural module, this technique has proven to be great at
markerless automatic behavioural scoring in mice.

Prior studies have either focused on classifying predefined behavioural modules or mapping undis-
covered behavioural modules (De Chaumont et al., 2012; Wiltschko et al., 2015). De Chaumont et al.
(2012) developed a model that could describe multiple mice on a video, where each mouse was mod-
eled using 3 geometric primitives (i.e. head, body, tail). These inferred body parts were then used to
define various (social) behavioural modules. However, this model has proved to be inconsistent in that
mouse identities tend to switch. Furthermore, the model used a physics engine to find the optimal lo-
cation of body parts. In contrast, the pose estimation model used in this thesis needs to such complex
physics engine an can infer approximate locations of any body part that is labeled by just a few images
(Mathis et al., 2018; Nath* et al., 2018; Insafutdinov et al., 2016). This multiple body part resolution
may result in the ability to expand to more detailed and reliable behavioural modules, which has partly
been shown in this thesis as Wall Exploration and Corner Sitting. Next to classifying behaviour body
part configuration, one may use the kinetic action recognition transfer learning technique applied in
this thesis to describe multiple behaviours. Although this thesis only used one output label (i.e. Object
Exploration), there is not obvious reason that this shouldn’t generalize to more labels as the original
model could classify up to 600 categories (Carreira and Zisserman, 2017). Another study has focused
on discovering meaningful behavioural modules by finding latent behaviours in mice (Wiltschko et al.,
2015). This may be especially beneficial when one aims to discover new behavioural modules that de-
scribe global behavioural patterns in some task. Once a set of latent behavioural have been found, this
could subsequently be used to in another efficient action classification model such as described in this
thesis. Overall, the ideas in this thesis provide a novel and reliable stance on video action classification
in rodents.

The high time resolution action classification model developed in this thesis opens doors for neu-
roscience research in that it may be paired with techniques such as neural recording and optogenetics.
For example, one may pair neural recordings with the inferred head direction and aim to explore some
relationship between signal and gaze type. Integrating video action classification time and recording
time could thus allow to find correlates of behaviour with neural responses. Next to passive recording,
one may want to study the direct effect op optogenetic stimulation on behaviour in some task. Whereas
most methods summarize behaviour over an entire trial, the developed action classification method
allows for more detailed descriptions of the effect on behaviour.

To summarize, this thesis has shown that one can engineer an accurate rodent action classification
model using techniques borrowed from the machine learning field such as kinetic action recognition,
transfer learning, and pose estimation. This model can be used to classify three behaviours (i.e. Ob-
ject Exploration, Wall Exploration, Corner Sitting), but is in principle not limited to these categories.
Furthermore, this model may be used to perform a detailed behavioural analysis due to its high time
resolution.
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4.2 Memory Processes In a Mouse Model of Autism

Autism is a cluster of behavioural abnormalities manifesting as impaired social behaviour, perseverance
behaviours and stereotypies (Klinger et al., 2019). Among these abnormalities might be affected memory
processes with impaired episodic memory deficits, and condition-dependent equal or superior semantic
memory performance (Goddard et al., 2014; Gaigg, Bowler, and Gardiner, 2014). In this study, ehmt1+/−

and ehmt1+/+ mice performed the Object-Space task for all conditions (Genzel et al., 2018). Based on
videos, behavioural features were extracted for all trials and were subsequently used to predict mouse
genotype per condition for each trial.

The classifier was able to do a task-dependent genotyping of mice for each trial with only signif-
icant accuracies in the stable and overlapping condition of the Object-Space task (Genzel et al., 2018).
Interestingly, these are the two conditions that contain object-location patterns that may be extracted dif-
ferentially between ehmt1+/− and ehmt1+/+ mice. Specifically, the accuracy in the genotype prediction
of trials from the overlapping condition was the highest and this condition is characterized by one stable
object location and one variable object location. A proxy of pattern extraction (i.e. memory) would be
some behavioural feature that distinguishes between either object. Accordingly, top features used by
the genotype classifiers in the overlapping condition are dominated by object distinguishing features
such as mini_DI and mini_n_explore_obj1. With the ehmt1+/− mice having a higher discrimination index
per minute and a lower total exploration time per object than the ehmt1+/− in the overlapping con-
dition over trials, this suggest that ehmt1+/− mice have a more efficient way of expressing memory.
To elucidate, the high discrimination index indicates that the moving object is explored more than the
static one thus likely being perceived as a more novel location. The accompanying lower exploration
times implies that this higher memory expression is achieved in less total time. Whether this memory
expression is due to semantic or episodic processes remains to be determined, since genotype was pre-
dicted over all trials and no juxtaposition between train and test trials could be made with the current
model. Next, top features used by the genotype classifiers for the trials in from the stable condition are
dominated by exploration time related features such as mini_explore_time and mini_obj1_time. It must
be noted that min5_DI is the top feature of one classifiers in the stable condition. For all time related
features, there is either no difference between genotype or the ehmt1+/− mice mice have a lower explo-
ration time than the ehmt1+/+ mice. Notably, the DI does not differ over trials between genotype in the
stable condition. That the top features in predicting genotype in the stable trials are mostly characterized
by time comes as no surprise, since for most of the trials the objects are location invariant. This task-
dependent expression of exploration times supports results from prior studies that this specific mouse
model of autism have reduced exploratory behaviour (Balemans et al., 2010). Overall, the results show a
condition/feature-dependent genotyping with more memory related features in the overlapping condi-
tion and more general behavioural features in the stable condition. This is in line with prior studies that
autism is characterized by altered memory and improved pattern extraction in some contexts (Goddard
et al., 2014; Gaigg, Bowler, and Gardiner, 2014; Benevento et al., 2017). This particular study suggests
that autism is characterized by an improved memory expression by object-location discrimination pat-
terns. The results are also in line with prior studies finding innate behavioural differences in individuals
with autism, namely that those with autism show reduced exploration (Balemans et al., 2010). This par-
ticular study suggests that exploration is reduced in autism invariant of condition, but might be more
meaningful in the context of a stable environment.

The aforementioned results show that the Object-Space task may provide a novel way to investigate
memory processes in in both healthy and disease model mice (Genzel et al., 2018). For one, this study
showed that the Object-Space task has meaningful conditions which are useful in prediction mouse
genotype through some behavioural and memory features expressed by mice in single trials. The su-
perior genotype prediction accuracies in the overlapping condition implies that this task captures be-
havioural expressions in mice. Specifically, it suggests that autism model mice show differential memory
related behavioural expression compared to healthy mice. The high genotype prediction accuracies in
the stable condition implies that this task captures innate task-dependent behavioural differences that
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may or may not be related to memory. Genzel et al. (2018) have shown that the Object-Space task may
distinguish episodic and semantic memory processes when looking at training versus test trials. The
current study did not aim to validate this, yet expands the idea that the Object-Space task opens doors
to investigate memory processes in a novel way.

The genotyping methods developed in this study is, of course, no match for existing methods based
on biological measures (Kwok, 2000; Tsuchihashi and Dracopoli, 2002). The developed behavioural
genotyping method merely shows that there are task-dependent behavioural differences whether these
are due to some cognitive process or not. Additionally, due to the feature importances extraction, this
method provides a way to take a fresh look at variables typically used in varying studies. For example,
in the showcase study of the Object-Space task this method may suggest that the discrimination index,
typically used as a proxy of memory, may be condition/time-dependent in its expression. This is partic-
ularly depicted by that the discrimination index after minute 3 was differed between genotype of mice
in the overlapping condition, but despite being important none were different in the stable condition.
This also touches a point on the usefulness of a classifier over humans in the behavioural genotyping
in mice. Altough one features could significantly differ between genotype, this is not sufficient to accu-
rately distinguish between them. That is, one variable can be different, yet still have many overlapping
cases such that no threshold with provide an accuracy above chance. On the other hand, even features
that do not show significant differences as a single variable between genotypes may be important in
the decision. This is because the used classifiers are decision trees that approximate some non-linear
function between all features to predict the genotype. That is, features may modulate each other. No
single feature suffices, yet together they may be used in way to predict genotype that is hard for the
human observer.

Future studies using behavioural categorization may want to include different features depending
on their research question. In this particular case the features used are those that are standard in the
study of memory in the Object-Space task. Potential other features, such as wall or corner exploration,
were deliberately omitted due to time and usefulness concerns. There may be other memory related
features that the author did not think of that may proof to be of importance in distinguishing between
the ehmt1 genotypes. Furthermore, future studies that aim to provide a more nuanced description of
differences in episodic and semantic memory in the Object-Space task would require to use more trials.
To elaborate, this study could not make a distinctive analysis between training and test trials, since
classifiers need hundreds of training data points and these were simply not available for the test trials.

Overall, this study has shown a task-dependent genotyping of an autism model of mice and healthy
mice. Behavioural genotyping may be most efficient in an environment that is characterized by dynamic
patterns that could be extracted through object-location discrimination. This is supported by the use
of the object discrimination index in the overlapping condition trials for genotyping. Furthermore,
behavioural genotyping may also be done in an environment that is characterized by stable patterns.
This is supported by the use of overall exploration time features in the stable condition. The ehmt1+/−

mice show improved and efficient memory expressions in the overlapping condition, suggesting it may
be a model of high-functioning autism in mice.

4.3 Conclusion

Computerized analysis may provide an observer invariant approach to extract meaningful behavioural
information from video data of rodents performing a task. The extracted information can be used to
describe behavioural transitions and other relations between or within behavioural modules on a time
scale that is only limited by the recorder. In this thesis such video analysis has shown that: 1. mouse
genotype can be predicted using behaviours, and 2. an ehmt1 mouse autism model of mice express
more memory related behaviours than its healthy controls in the Object-Space task condition, where
there are object-location patterns to be extracted over trials. This suggests that ehmt1+/− mice have
improved memory or pattern extraction over ehmt1+/+ mice.
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